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1 Introduction 
Intel® 5000 Series Chipset supports PCIe devices attached to the MCH and/or 
the Intel® 631xESB / 632xESB I/O Controller Hub (including integrated PCIe* 
devices). Interrupt support for these PCIe devices is using PCI compatible INTx 
emulation scheme or using MSI/MSI-X scheme. 

In case of INTx emulation scheme, the interrupts from the PCIe devices are 
signaled as inband messages that are eventually converted to system 
interrupts by the root complex. In order to better distribute INTx interrupts, 
the PCIe Base Specification 1.0a requires bridges to map interrupts from 
secondary side to primary side based on device number (per Table 2-13 of 
PCIe Base Specification 1.0a). 

However, most ports have only one device with device number 0 that results in 
identity mapping of the interrupt (INTA  INTA, INTB  INTB,…). As a result, 
if root ports mapped the downstream interrupts messages as is to the interrupt 
controller, all PCIe interrupts will likely be mapped to a single input of the 
interrupt controller.  

The Intel 5000 Series Chipset implements interrupt swizzling logic to rebalance 
and distribute the PCIe legacy interrupts for performance and load balancing. 
This document describes the  interrupt swizzling scheme in detail and discusses 
the programming requirements to implement this scheme. 
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2 Interrupt Swizzling Overview 
Consider a platform configuration where Port 0, 2, 4, 6 are populated with PCIe 
devices. The default mapping of PCI INTx messages to system interrupt 
controllers is as shown in Figure 1. 

Figure 1. Interrupt Routing without Interrupt Swizzling 

 

As illustrated above, the default mapping results in mapping of all 4 PCIe 
devices (assigned to device number 0) to the same interrupt although Intel® 
5000 Series Chipsets supports 4 unique interrupts. 

The interrupt mapping for the same platform configuration with optimal 
interrupt swizzling enabled is shown in Figure 2. 
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Figure 2. Interrupt routing with Optimal Interrupt Swizzling 
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3 Interrupt Swizzling Scheme 
Limitations 
The effectiveness of Interrupt swizzling scheme is dependent on the following: 

System BIOS that programs the interrupt swizzling logic must comprehend the 
PCIe configuration of the platform and customize the programming of the 
swizzling logic accordingly. This includes comprehending all populated PCIe 
ports, devices as well as hot plug-capable slots supported on the platform. 

The Intel 5000 Series chipset supports a maximum of 4 unique interrupt 
messages to the system interrupt controller (ICH IOxAPIC). As a result, the 
interrupt swizzling can still result in sharing of interrupts between devices if the 
PCIe hierarchy contains more than 4 devices. 
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4 Programming for Interrupt 
Swizzling 
The Intel 5000 Series chipset supports 6 x4 PCIe ports and an ESI port for a 
total of 7 ports. For each of these 7 ports, the interrupt mapping for that port 
to the system interrupt controller is controlled by programming the 
corresponding INTXSWZCTRL register.  The register is described Table 1. 

Table 1 Interrupt Swizzle Control Register on PCIe Ports of Intel® 5000 Chipset 

PCIe Port DID BDF Mapping INTXSWZCTRL offset 

0 (ESI) SKU dependant B:0, D:0, F:0 4Fh 

2 (PCIe) 25E2h B:0, D:2, F:0 4Fh 

3 (PCIe) 25E3h B:0, D:3, F:0 4Fh 

4 (PCIe) 25E4h B:0, D:4, F:0 4Fh 

5 (PCIe) 25E5h B:0, D:5, F:0 4Fh 

6 (PCIe) 25E6h B:0, D:6, F:0 4Fh 

7 (PCIe) 25E7h B:0, D:7, F:0 4Fh 

INTXSWZCTRL register (bits 1:0, other bits reserved) supports 4 combinations 
of interrupt mapping using the barber-pole stride mechanism. 

4.1 BIOS 
The default value of INTXSWZCTRL at reset is 0h corresponding to identity 
mapping of interrupts (INTA  INTA,…). System BIOS is required to program 
the INTXSWZCTRL register for each port to ensure that the interrupts load is 
balanced across the available system interrupts. The Intel® 5000 Series 
Chipset supports a maximum of 4 unique system interrupts for the PCIe 
hierarchy. System BIOS must program the INTXSWZCTRL register of each 
populated port on the platform for optimal performance and load balancing. 

For example, in a platform where Ports 0, 2, 4, 6 are populated with PCIe 
devices, the system BIOS could program the INTXSWZCTRL register for ports 
0, 2, 4, and 6 as described in Table 2. 
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Table 2 Example Interrupt Swizzling configuration 

Port INTXSWZCTRL value Resulting Interrupt mapping 

0 00h INTA INTA 

INTB INTB 

INTC INTC 

INTD INTD 

2 01h INTA INTB 

INTB INTC 

INTC INTD 

INTD INTA 

4 02h INTA INTC 

INTB INTD 

INTC INTA 

INTD INTB 

6 03h INTA INTD 

INTB INTA 

INTC INTB 

INTD INTC 

4.2 OS 
The mapping of PCIe virtual interrupt (INTx) to system interrupt is indicated to 
the OS using firmware tables. OSes that comprehend ACPI _PRT method, parse 
_PRT to identify the mapping. Older OSes use MPS1.4 table method to identify 
the mapping. 

System BIOS that implement interrupt swizzling must comprehend the effect of 
swizzling when constructing the _PRT or MPS1.4 interrupt mapping table. OS 
itself does not require any special handling to support interrupt swizzling 
mechanism. 

4.3 Performance Benefits of Interrupt Swizzling 
on Intel 5000 Series Chipset 
This section utilizes a networking stack running on Linux2.4 is to illustrate the 
performance benefits incurred by adopting interrupt swizzling scheme on 
platforms based on the Intel 5000 series chipset. However, the benefits of the 
interrupt swizzling scheme is neither limited to a specific IO stack nor to a 
specific OS. 

With highly threaded applications, such as database and web server 
applications, the OS is responsible for balancing the active (ready) threads 
among the available CPU cores. Software developers optimize the granularity 
of application threads with the goal of minimizing the overheads of 
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multithreading (for example, thread switching, migrating threads to balance 
the use of CPUs) while maximizing parallelism offered by multithreading. 
Kernel level applications and especially networking stacks are architected to be 
single threaded for various reasons:  

Networking is layered directly above the hardware (that is, networking 
interface controllers, or NICs).  

Networking stacks typically run in the most privileged mode allowed by the 
operating system (for example, SoftIRQ mode in Linux and Deferred Procedure 
Call mode in Windows). 

In order to keep pace with high speed HW interfaces (for example, Gigabit 
Ethernet), networking stacks can not afford to be burdened with the overheads 
associated with multithreading. 

Note: The following discussion assumes Linux (2.4 and later versions) as the 
underlying Operating system. Please note, Linux 2.4 does not support  MSI 
(PCISIG defined Message Signaled Interrupt). 

In a typical network processing scenario, a network packet is received over an 
Ethernet port. The NIC controlling that port deposits the packet in the memory 
and signals the CPU through a HW interrupt. The CPU runs an interrupt service 
routine (ISR) to attend the HW interrupt and update the HW status of the 
network device. At the end of the ISR, the CPU queues the follow-up work for 
processing the received packet(s) by signaling a SoftIRQ. SoftIRQs, being 
highly privileged threads in Linux, are closely guarded resources. The 
networking stack has one SoftIRQ permanently assigned in the architecture of 
Linux kernel. SoftIRQs are a per CPU resource, hence there is one networking 
SoftIRQ per available core in SMP platforms.   

As mentioned, all packet processing, that is, queueing and dequeing packets 
from the network interface, IPv4/IPv6 processing and TCP/UDP processing in 
Linux happens in the SoftIRQ context. In fact, several layer 3 and layer 4 
networking functions such as firewall, VPN, proxy and intrusion detection are 
processed in the same SoftIRQ context upon receiving a packet.  

Since SoftIRQs are CPU specific and are triggered through ISRs for specific HW 
devices, functions such as routing (or layer 3 forwarding) have affinity at the 
software level to a specific CPU core. This is the same core that receives the 
hardware interrupt upon receipt of a packet.  

Linux on Intel architecture platforms offers three choices for routing interrupts 
from network devices to CPU cores: 

1. Default routing: all interrupts are routed the same CPU core (typically 
core 0).  

2. Stack interrupt routing: Interrupts from a HW device are preferentially 
routed to the same CPU core always. 

3. IRQ Balance: the IOAPIC in the chipset distributes all interrupts (from all 
devices) among available cores in a round robin fashion. 
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While it is intuitive that IRQ Balance should offer the best load balance and 
optimal throughput under high network throughput conditions, computationally 
light weight functions such as IPv4 forwarding are observed to achieve peak 
throughput through static interrupt routing. Also, for statically defined packet 
flows (that is, the receiving and transmitting NICs are fixed), static binding of 
both NICs (that is, their HW interrupts to CPU cores in same socket) is known 
to maximize performance. This is due to the hardware overhead involved in 
synchronizing the Transmit (TX) and Receive (RX) sides of the flow in an SMP 
context. Figure 3 shows the flow of a packet through an IPv4 forwarding stack 
on a uniprocessor (UP) IA32/Linux platform: a packet arrives through Ethernet 
interface eth0 (receiving port), is processed by the CPU and then sent through 
the transmitting (TX) Ethernet interface eth1. 

Figure 3 . Example of Network Packet Forwarding 

 

In a multiprocessor/multi-core platform with multiple NICs, peak performance 
requires packets received over all NICs be processed by distributing them 
evenly among the available cores. Based on empirical data, we recommend the 
following rules of static interrupt binding for NICs to maximize the performance 
of kernel level networking functions:  

1. Each NIC would have its HW interrupt/bound to a different CPU core. The 
transmitting and receiving NICs of a given flow would be assigned to a 
pair of cores in the same CPU socket. 

2. When the number of NICs exceeds the number of CPU cores, then assign 
the IRQs of the transmitting and receiving NICs of a given flow to the 
same CPU core, while distributing different flows among available cores. 

3. The transmitting and receiving sides of a flow should be allocated to cores 
in different CPU sockets only when (1) and (2) cannot be satisfied 
completely. 
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Figure 4 illustrates rule (1) with the schematic of a platform based on Intel 
5000 series chipset. 

Figure 5 illustrates rules (1) and (2) with the schematic of a platform based on 
Intel 5000 series chipset.1 

                                          
1 We observe that rule (3) can be put into use only the rare case when the available flows are some how 

skewed in CPU assignments & hence it might be necessary to allocated cores from different socket. Hence 
case (3) is not illustrated here. 
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Figure 4 Example of Static Affinity assignment for IRQs (each NIC assigned a 
different core) 
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Figure 5 Example of Static Affinity assignment for IRQs (each flow assigned a 
different core) 

 

Since IRQs and their static CPU affinities are the basis for balancing available 
CPU cores among packet flows, it is easy to see why a poor IRQ assignment by 
the firmware could result in a poor utilization of CPU cores and poor forwarding 
throughput in turn. In the extreme case when all the NICs are assigned to the 
same IRQ, any IRQ binding policy (whether static, default or IRQ balance) 
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would result in all packets (from all the NICs) being processed by the same 
CPU core – netting a 75% wastage of CPU resources in a Woodcrest/Bensley 
platform. 

Table 3 shows the IRQ assignments on a sample platform based on Intel® 
5000 series chipset that contains three of Intel 82571 dual port PCI Express 
NICs plugged into the three available PCIe slots, besides the on board dual port 
NIC on board.  

Table 3 IRQ Assignment on Platform based on Intel ® 5000 series chipset - 
with and without Interrupt Swizzling 

PCIe Slot Assignments to NIC Ports IRQ Assignments to NIC Ports 

Swizzle 
Enabled? 

 On Board 
Dual-Port 
GbE NIC 

Intel® 
5000 
Series 

Chipset  

PCIe x8 

Slot (6) 

Intel® 
5000 
Series 

Chipset  

PCIe x8 

Slot (5) 

631x/632x

PCIe x4 

Slot (4) 

IRQ16 IRQ17 IRQ18 IRQ19

NO eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 

eth6 

eth2 

eth4 

eth7 
eth3 

eth5 
eth0 eth1 

YES eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 
eth6 

eth2 

eth7 

eth3 

eth0 

eth4 

eth1 

eth3 

In the original assignment when swizzle is not implemented, the Ethernet ports 
(eth2, eth3, eth4 and eth5) attached to Intel 5000 Series Chipset are assigned 
to IRQs 16 and 17. Thus, any flow configuration involving ports eth2, eth3 and 
eth4 and eth5 can take advantage of only two of the 4 available cores. Even 
when all the ports eth0 through eth7 are involved, it is not possible to engage 
all four cores without overloading two of the cores with two additional flows, 
while two other cores would be handle only one flow (together). By swizzling 
(row 2), the IRQ assignments to eth4 and eth2 are spread out to IRQ18 and 
IRQ19. This makes for an even spread of servicing NICs among the cores; even 
when considering only the 4 ports attached to Intel® 5000 Series Chipset, it is 
now possible to engage all the 4 CPU cores evenly (consequently maximizing 
forwarding throughput). Table 4 illustrates this performance improvement in 
forwarding throughput on Linux 2.4.21 (RHEL3).  
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Table 4 IPv4 Forwarding Throughput in Packets Per Second on Platform using 
Intel® 5000 series chipset (with and without Interrupt Swizzling)  

Color Code for Core 
Assignments 

Core 
1 

Core 
1 Core2 Core3  

Assignment of cores to Ethernet ports

BIOS 
Version 

#  

Ethernet 
Ports 

Flows On Board  

Dual-Port 
GbE NIC 

INTEL® 5000 
Series Chipset  

PCIe x8 

Slot (6) 

INTEL® 
5000 
Series 
Chipset  

PCIe x8 

Slot (5) 

631x/632x

PCIe x4 

Slot (4) 

Throughput 

Small 
(64B)  

Packets/ 

Sec 

Comment

NO 
SWIZZLE 

4 

eth2   
eth4  

eth3   
eth5 

eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 1,413,690 

NO 
SWIZZLE 

4 

Eth0   
eth1 

Eth2   
eth3 

eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 2,585,565 

SWIZZLE 4 

eth2   
eth3  

eth4   
eth5 

eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 2,626,023 

Improved 
Interrupt 
assignment 
facilitates 
the use of all 
4 cores.  

NO 
SWIZZLE 

8 

eth0   
eth4  

eth1   
eth5  

eth2   
eth6  

eth3   
eth7  

Due the concentration of NIC ports IRQs 16 and 17, it is not possible to distribute 
the flows evenly among the available cores. Best achievable throughput occurs 
with 6 ports & 3 flows (Not shown here)  

SWIZZLE 8 

eth0   
eth4  

eth1   
eth5  

Eth2   
eth6  

eth3   
eth7  

eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 2,836,681 

While it is possible to achieve near peak throughput of 2.6 Mpps (with 4 cores) 
without interrupt swizzling, swizzling allows a wider choice of flow 
configurations that achieve peak performance up to 2.8 Mpps. 
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