

Document Number: 314337-002

Interrupt Swizzling Solution for
Intel® 5000 Chipset Series based
Platforms
Application Note

August 2006

2 314337-002

Notice: This document contains information on products in the design phase of development. The information here is subject to
change without notice. Do not finalize a design with this information.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

The Intel® 5000 Series product may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a 2-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by
Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and
North American Philips Corporation.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting Intel's Web Site.

The Intel logo is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other
countries.

Copyright © 2006, Intel Corporation. All rights reserved.

* Other brands and names may be claimed as the property of others.

http://www.intel.com/

314337-002 3

Contents
1 Introduction..5
2 Interrupt Swizzling Overview..7
3 Interrupt Swizzling Scheme Limitations..9
4 Programming for Interrupt Swizzling..11

4.1 BIOS .. 11
4.2 OS ... 12
4.3 Performance Benefits of Interrupt Swizzling on

Intel 5000 Series Chipset .. 12

Figures

Figure 1. Interrupt Routing without Interrupt Swizzling.............................. 7
Figure 2. Interrupt routing with Optimal Interrupt Swizzling 8
Figure 3 . Example of Network Packet Forwarding14
Figure 4 Example of Static Affinity assignment for IRQs

(each NIC assigned a different core) ..16
Figure 5 Example of Static Affinity assignment for IRQs

(each flow assigned a different core) ..16

Tables

Table 1 Interrupt Swizzle Control Register on PCIe Ports of
Intel® 5000 Chipset ...11

Table 2 Example Interrupt Swizzling configuration12
Table 3 IRQ Assignment on Platform based on Intel ® 5000

series chipset - with and without Interrupt Swizzling17
Table 4 IPv4 Forwarding Throughput in Packets Per Second on

Platform using Intel® 5000 series chipset (with and
without Interrupt Swizzling)..18

Introduction

4 314337-002

Revision History
Revision
Number Description Date

001 • Initial release of the document. August 2006

002 • Updated product names. August 2006

 Introduction

314337-002 5

1 Introduction
Intel® 5000 Series Chipset supports PCIe devices attached to the MCH and/or
the Intel® 631xESB / 632xESB I/O Controller Hub (including integrated PCIe*
devices). Interrupt support for these PCIe devices is using PCI compatible INTx
emulation scheme or using MSI/MSI-X scheme.

In case of INTx emulation scheme, the interrupts from the PCIe devices are
signaled as inband messages that are eventually converted to system
interrupts by the root complex. In order to better distribute INTx interrupts,
the PCIe Base Specification 1.0a requires bridges to map interrupts from
secondary side to primary side based on device number (per Table 2-13 of
PCIe Base Specification 1.0a).

However, most ports have only one device with device number 0 that results in
identity mapping of the interrupt (INTA INTA, INTB INTB,…). As a result,
if root ports mapped the downstream interrupts messages as is to the interrupt
controller, all PCIe interrupts will likely be mapped to a single input of the
interrupt controller.

The Intel 5000 Series Chipset implements interrupt swizzling logic to rebalance
and distribute the PCIe legacy interrupts for performance and load balancing.
This document describes the interrupt swizzling scheme in detail and discusses
the programming requirements to implement this scheme.

Introduction

6 314337-002

 Interrupt Swizzling Overview

314337-002 7

2 Interrupt Swizzling Overview
Consider a platform configuration where Port 0, 2, 4, 6 are populated with PCIe
devices. The default mapping of PCI INTx messages to system interrupt
controllers is as shown in Figure 1.

Figure 1. Interrupt Routing without Interrupt Swizzling

As illustrated above, the default mapping results in mapping of all 4 PCIe
devices (assigned to device number 0) to the same interrupt although Intel®
5000 Series Chipsets supports 4 unique interrupts.

The interrupt mapping for the same platform configuration with optimal
interrupt swizzling enabled is shown in Figure 2.

Interrupt Swizzling Overview

8 314337-002

Figure 2. Interrupt routing with Optimal Interrupt Swizzling

 Interrupt Swizzling Scheme Limitations

314337-002 9

3 Interrupt Swizzling Scheme
Limitations
The effectiveness of Interrupt swizzling scheme is dependent on the following:

System BIOS that programs the interrupt swizzling logic must comprehend the
PCIe configuration of the platform and customize the programming of the
swizzling logic accordingly. This includes comprehending all populated PCIe
ports, devices as well as hot plug-capable slots supported on the platform.

The Intel 5000 Series chipset supports a maximum of 4 unique interrupt
messages to the system interrupt controller (ICH IOxAPIC). As a result, the
interrupt swizzling can still result in sharing of interrupts between devices if the
PCIe hierarchy contains more than 4 devices.

Interrupt Swizzling Scheme Limitations

10 314337-002

 Programming for Interrupt Swizzling

314337-002 11

4 Programming for Interrupt
Swizzling
The Intel 5000 Series chipset supports 6 x4 PCIe ports and an ESI port for a
total of 7 ports. For each of these 7 ports, the interrupt mapping for that port
to the system interrupt controller is controlled by programming the
corresponding INTXSWZCTRL register. The register is described Table 1.

Table 1 Interrupt Swizzle Control Register on PCIe Ports of Intel® 5000 Chipset

PCIe Port DID BDF Mapping INTXSWZCTRL offset

0 (ESI) SKU dependant B:0, D:0, F:0 4Fh

2 (PCIe) 25E2h B:0, D:2, F:0 4Fh

3 (PCIe) 25E3h B:0, D:3, F:0 4Fh

4 (PCIe) 25E4h B:0, D:4, F:0 4Fh

5 (PCIe) 25E5h B:0, D:5, F:0 4Fh

6 (PCIe) 25E6h B:0, D:6, F:0 4Fh

7 (PCIe) 25E7h B:0, D:7, F:0 4Fh

INTXSWZCTRL register (bits 1:0, other bits reserved) supports 4 combinations
of interrupt mapping using the barber-pole stride mechanism.

4.1 BIOS
The default value of INTXSWZCTRL at reset is 0h corresponding to identity
mapping of interrupts (INTA INTA,…). System BIOS is required to program
the INTXSWZCTRL register for each port to ensure that the interrupts load is
balanced across the available system interrupts. The Intel® 5000 Series
Chipset supports a maximum of 4 unique system interrupts for the PCIe
hierarchy. System BIOS must program the INTXSWZCTRL register of each
populated port on the platform for optimal performance and load balancing.

For example, in a platform where Ports 0, 2, 4, 6 are populated with PCIe
devices, the system BIOS could program the INTXSWZCTRL register for ports
0, 2, 4, and 6 as described in Table 2.

Programming for Interrupt Swizzling

12 314337-002

Table 2 Example Interrupt Swizzling configuration

Port INTXSWZCTRL value Resulting Interrupt mapping

0 00h INTA INTA

INTB INTB

INTC INTC

INTD INTD

2 01h INTA INTB

INTB INTC

INTC INTD

INTD INTA

4 02h INTA INTC

INTB INTD

INTC INTA

INTD INTB

6 03h INTA INTD

INTB INTA

INTC INTB

INTD INTC

4.2 OS
The mapping of PCIe virtual interrupt (INTx) to system interrupt is indicated to
the OS using firmware tables. OSes that comprehend ACPI _PRT method, parse
_PRT to identify the mapping. Older OSes use MPS1.4 table method to identify
the mapping.

System BIOS that implement interrupt swizzling must comprehend the effect of
swizzling when constructing the _PRT or MPS1.4 interrupt mapping table. OS
itself does not require any special handling to support interrupt swizzling
mechanism.

4.3 Performance Benefits of Interrupt Swizzling
on Intel 5000 Series Chipset
This section utilizes a networking stack running on Linux2.4 is to illustrate the
performance benefits incurred by adopting interrupt swizzling scheme on
platforms based on the Intel 5000 series chipset. However, the benefits of the
interrupt swizzling scheme is neither limited to a specific IO stack nor to a
specific OS.

With highly threaded applications, such as database and web server
applications, the OS is responsible for balancing the active (ready) threads
among the available CPU cores. Software developers optimize the granularity
of application threads with the goal of minimizing the overheads of

 Programming for Interrupt Swizzling

314337-002 13

multithreading (for example, thread switching, migrating threads to balance
the use of CPUs) while maximizing parallelism offered by multithreading.
Kernel level applications and especially networking stacks are architected to be
single threaded for various reasons:

Networking is layered directly above the hardware (that is, networking
interface controllers, or NICs).

Networking stacks typically run in the most privileged mode allowed by the
operating system (for example, SoftIRQ mode in Linux and Deferred Procedure
Call mode in Windows).

In order to keep pace with high speed HW interfaces (for example, Gigabit
Ethernet), networking stacks can not afford to be burdened with the overheads
associated with multithreading.

Note: The following discussion assumes Linux (2.4 and later versions) as the
underlying Operating system. Please note, Linux 2.4 does not support MSI
(PCISIG defined Message Signaled Interrupt).

In a typical network processing scenario, a network packet is received over an
Ethernet port. The NIC controlling that port deposits the packet in the memory
and signals the CPU through a HW interrupt. The CPU runs an interrupt service
routine (ISR) to attend the HW interrupt and update the HW status of the
network device. At the end of the ISR, the CPU queues the follow-up work for
processing the received packet(s) by signaling a SoftIRQ. SoftIRQs, being
highly privileged threads in Linux, are closely guarded resources. The
networking stack has one SoftIRQ permanently assigned in the architecture of
Linux kernel. SoftIRQs are a per CPU resource, hence there is one networking
SoftIRQ per available core in SMP platforms.

As mentioned, all packet processing, that is, queueing and dequeing packets
from the network interface, IPv4/IPv6 processing and TCP/UDP processing in
Linux happens in the SoftIRQ context. In fact, several layer 3 and layer 4
networking functions such as firewall, VPN, proxy and intrusion detection are
processed in the same SoftIRQ context upon receiving a packet.

Since SoftIRQs are CPU specific and are triggered through ISRs for specific HW
devices, functions such as routing (or layer 3 forwarding) have affinity at the
software level to a specific CPU core. This is the same core that receives the
hardware interrupt upon receipt of a packet.

Linux on Intel architecture platforms offers three choices for routing interrupts
from network devices to CPU cores:

1. Default routing: all interrupts are routed the same CPU core (typically
core 0).

2. Stack interrupt routing: Interrupts from a HW device are preferentially
routed to the same CPU core always.

3. IRQ Balance: the IOAPIC in the chipset distributes all interrupts (from all
devices) among available cores in a round robin fashion.

Programming for Interrupt Swizzling

14 314337-002

While it is intuitive that IRQ Balance should offer the best load balance and
optimal throughput under high network throughput conditions, computationally
light weight functions such as IPv4 forwarding are observed to achieve peak
throughput through static interrupt routing. Also, for statically defined packet
flows (that is, the receiving and transmitting NICs are fixed), static binding of
both NICs (that is, their HW interrupts to CPU cores in same socket) is known
to maximize performance. This is due to the hardware overhead involved in
synchronizing the Transmit (TX) and Receive (RX) sides of the flow in an SMP
context. Figure 3 shows the flow of a packet through an IPv4 forwarding stack
on a uniprocessor (UP) IA32/Linux platform: a packet arrives through Ethernet
interface eth0 (receiving port), is processed by the CPU and then sent through
the transmitting (TX) Ethernet interface eth1.

Figure 3 . Example of Network Packet Forwarding

In a multiprocessor/multi-core platform with multiple NICs, peak performance
requires packets received over all NICs be processed by distributing them
evenly among the available cores. Based on empirical data, we recommend the
following rules of static interrupt binding for NICs to maximize the performance
of kernel level networking functions:

1. Each NIC would have its HW interrupt/bound to a different CPU core. The
transmitting and receiving NICs of a given flow would be assigned to a
pair of cores in the same CPU socket.

2. When the number of NICs exceeds the number of CPU cores, then assign
the IRQs of the transmitting and receiving NICs of a given flow to the
same CPU core, while distributing different flows among available cores.

3. The transmitting and receiving sides of a flow should be allocated to cores
in different CPU sockets only when (1) and (2) cannot be satisfied
completely.

 Programming for Interrupt Swizzling

314337-002 15

Figure 4 illustrates rule (1) with the schematic of a platform based on Intel
5000 series chipset.

Figure 5 illustrates rules (1) and (2) with the schematic of a platform based on
Intel 5000 series chipset.1

1 We observe that rule (3) can be put into use only the rare case when the available flows are some how

skewed in CPU assignments & hence it might be necessary to allocated cores from different socket. Hence
case (3) is not illustrated here.

Programming for Interrupt Swizzling

16 314337-002

Figure 4 Example of Static Affinity assignment for IRQs (each NIC assigned a
different core)

Intel® 5000 Series
Chipset + Intel®

631x/632x ESB
Complex

Core
2

Core
3

Core
0

Core
1

On Board
Dual-Port

GbE

Platform based on Intel® 5000 Series Chipset
Example of Static CPU Affinity Assignments for IRQs of NICs

Case of 2 bidirectional flows:
ETH0 ETH1,
ETH2 ETH3

Each NIC (IRQ) assigned to a different CPU core

Memory

PCI 32
Slot 1

PCIe x8
Slot 6

PCI, PCI-e
Bridge

Ethernet
MAC,
PCI-X

Bridge,
PCI-e

Bridge

PCIe x8
Slot 2

PCIX 64
Slot 4

PCIe x8
Slot 5

PCIe x4
Slot 3

ETH0

ETH1

ETH2

ETH3

ETH4

ETH5

ETH6

ETH7 ETH8

ETH9

IRQ16

IRQ17

IRQ18

IRQ19

Intel® Xeon® 5100
Processor 0

Intel® Xeon® 5100
Processor 1

Figure 5 Example of Static Affinity assignment for IRQs (each flow assigned a
different core)

Since IRQs and their static CPU affinities are the basis for balancing available
CPU cores among packet flows, it is easy to see why a poor IRQ assignment by
the firmware could result in a poor utilization of CPU cores and poor forwarding
throughput in turn. In the extreme case when all the NICs are assigned to the
same IRQ, any IRQ binding policy (whether static, default or IRQ balance)

 Programming for Interrupt Swizzling

314337-002 17

would result in all packets (from all the NICs) being processed by the same
CPU core – netting a 75% wastage of CPU resources in a Woodcrest/Bensley
platform.

Table 3 shows the IRQ assignments on a sample platform based on Intel®
5000 series chipset that contains three of Intel 82571 dual port PCI Express
NICs plugged into the three available PCIe slots, besides the on board dual port
NIC on board.

Table 3 IRQ Assignment on Platform based on Intel ® 5000 series chipset -
with and without Interrupt Swizzling

PCIe Slot Assignments to NIC Ports IRQ Assignments to NIC Ports

Swizzle
Enabled?

 On Board
Dual-Port
GbE NIC

Intel®
5000
Series

Chipset

PCIe x8

Slot (6)

Intel®
5000
Series

Chipset

PCIe x8

Slot (5)

631x/632x

PCIe x4

Slot (4)

IRQ16 IRQ17 IRQ18 IRQ19

NO eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7

eth6

eth2

eth4

eth7
eth3

eth5
eth0 eth1

YES eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7
eth6

eth2

eth7

eth3

eth0

eth4

eth1

eth3

In the original assignment when swizzle is not implemented, the Ethernet ports
(eth2, eth3, eth4 and eth5) attached to Intel 5000 Series Chipset are assigned
to IRQs 16 and 17. Thus, any flow configuration involving ports eth2, eth3 and
eth4 and eth5 can take advantage of only two of the 4 available cores. Even
when all the ports eth0 through eth7 are involved, it is not possible to engage
all four cores without overloading two of the cores with two additional flows,
while two other cores would be handle only one flow (together). By swizzling
(row 2), the IRQ assignments to eth4 and eth2 are spread out to IRQ18 and
IRQ19. This makes for an even spread of servicing NICs among the cores; even
when considering only the 4 ports attached to Intel® 5000 Series Chipset, it is
now possible to engage all the 4 CPU cores evenly (consequently maximizing
forwarding throughput). Table 4 illustrates this performance improvement in
forwarding throughput on Linux 2.4.21 (RHEL3).

Programming for Interrupt Swizzling

18 314337-002

Table 4 IPv4 Forwarding Throughput in Packets Per Second on Platform using
Intel® 5000 series chipset (with and without Interrupt Swizzling)

Color Code for Core
Assignments

Core
1

Core
1 Core2 Core3

Assignment of cores to Ethernet ports

BIOS
Version

Ethernet
Ports

Flows On Board

Dual-Port
GbE NIC

INTEL® 5000
Series Chipset

PCIe x8

Slot (6)

INTEL®
5000
Series
Chipset

PCIe x8

Slot (5)

631x/632x

PCIe x4

Slot (4)

Throughput

Small
(64B)

Packets/

Sec

Comment

NO
SWIZZLE

4

eth2
eth4

eth3
eth5

eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 1,413,690

NO
SWIZZLE

4

Eth0
eth1

Eth2
eth3

eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 2,585,565

SWIZZLE 4

eth2
eth3

eth4
eth5

eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 2,626,023

Improved
Interrupt
assignment
facilitates
the use of all
4 cores.

NO
SWIZZLE

8

eth0
eth4

eth1
eth5

eth2
eth6

eth3
eth7

Due the concentration of NIC ports IRQs 16 and 17, it is not possible to distribute
the flows evenly among the available cores. Best achievable throughput occurs
with 6 ports & 3 flows (Not shown here)

SWIZZLE 8

eth0
eth4

eth1
eth5

Eth2
eth6

eth3
eth7

eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7 2,836,681

While it is possible to achieve near peak throughput of 2.6 Mpps (with 4 cores)
without interrupt swizzling, swizzling allows a wider choice of flow
configurations that achieve peak performance up to 2.8 Mpps.

	1 Introduction
	2 Interrupt Swizzling Overview
	3 Interrupt Swizzling Scheme Limitations
	4 Programming for Interrupt Swizzling
	4.1 BIOS
	4.2 OS
	4.3 Performance Benefits of Interrupt Swizzling on Intel 5000 Series Chipset

